Aarde

Vanuit Wikipedia, die vrye ensiklopedie.
Spring na: navigasie , soek
Aarde Sterrekunde simbool van die aarde
'N planetêre skyf van wit wolk formasies, bruin en groen landmassas, en donker blou oseane teen' n swart agtergrond. Die Arabiese Skiereiland, Afrika en Madagaskar lê in die boonste helfte van die skyf, terwyl Antarktika is aan die onderkant.
" The Blue Marble "foto van die Aarde,
uit Apollo 17 geneem
Benamingen
Uitspraak Luister Ek / ?r ? /
Uitspraak: aardse , aardse , Aards , Aards , Terran , aardse .
Epog J2000.0 [nota 1]
Aphelion 152.098.232 km
1.01671388 AU [Nota 2]
Perihelion 147.098.290 km
0.98329134 AU [Nota 2]
Semi-hoofas 149.598.261 km
1.00000261 AU [1]
Eksentrisiteit 0.01671123 [1]
Orbitale periode 365,256363004 dae [2]
1,000017421 jr
Gemiddelde orbitale spoed 29,78 km / s [3]
107.200 km / h
Gemiddelde anomalie 357,51716 ° [3]
Inklinasie 7,155 ° na die Sun ' ewenaar
1,57869 ° [4] onveranderbare vliegtuig
Longitude van stygende nodus 348,73936 ° [3] [aantekening 3]
Argument van perihelion 114,20783 ° [3] [aantekening 4]
Satelliete 1 natuurlike ( Die Maan )
8300 + kunsmatige (van 1 Maart 2001 (2001 -03-01) ) [5]
Fisiese eienskappe
Gemiddelde radius 6,371.0 km [6]
Ekwatoriaal- radius 6,378.1 km [7] [8]
Polar radius 6,356.8 km [9]
Flattening 0.0033528 [10]
Omtrek 40,075.017 km ( Ekwatoriaal- ) [8]
40,007.86 km ( meridiaan ) [11]
Oppervlakte 510.072.000 km 2 [12] [13] [nota 5]

148.940.000 km 2 grond (29,2%)

361.132.000 km 2 water (70,8%)
Deel 1,08321 × 10 12 km 3 [3]
Massa 5,9736 × 10 24 kg [3]
Die gemiddelde digtheid 5,515 g / cm 3 [3]
Ekwatoriaal-Swaartekrag 9.780327 m / s 2 [14]
0,99732 g
Ontsnapping snelheid 11,186 km / s [3]
Sterre rotasie
tydperk
0.99726968 d [15]
23 h 56 m 4,100 s
Ekwatoriaal-rotasie snelheid 1,674.4 km / h (465,1 m / s) [16]
Axial tilt 23 ° 26'21 "0,4119 [2]
Albedo 0,367 ( meetkundige ) [3]
0,306 ( Bond ) [3]
Oppervlakte temp.
    Kelvin
    Celsius
min beteken Max
184 K [17] 287,2 K [18] 331 K [19]
-89,2 ° C 14 ° C 57,8 ° C
Sfeer
Oppervlakte druk 101,325 kPa ( MDL )
Samestelling 78,08% stikstof (N 2) [3]
20,95% suurstof (O 2)
0,93% argon
0,038% koolstofdioksied
Ongeveer 1% waterdamp (wissel met klimaat )

Aarde (of die aarde) is die derde planeet vanaf die Son , en die digste en vyfde grootste van die agt planete in die Sonnestelsel . Dit is ook die grootste van die sonnestelsel se vier aardse planete . Dit is ook soms na verwys as die wêreld , die blou planeet, [20] of deur sy Latynse naam, Terra . [nota 6]

Aarde gevorm 4,54 miljard jaar gelede, en die lewe verskyn op die oppervlak binne een biljoen jaar. [21] Die planeet is die tuiste van miljoene van spesies, insluitend die mens . [22 ] Die Aarde se biosfeer het aansienlik verander die atmosfeer en ander abiotiese toestande op die planeet , sodat die proliferasie van aërobiese organismes sowel as is van die osoonlaag wat, tesame met die aarde se magneetveld, blokke skadelike solar bestraling, lewe toelaat op die land . [23 ] Die fisiese eienskappe van die aarde, sowel as die geologiese geskiedenis en wentelbaan, het toegelaat om die lewe te bly gedurende hierdie tydperk. Die planeet is sal na verwagting voortgaan met die ondersteuning van die lewe vir ten minste nog 500 miljoen jaar . [24 ] [25]

Die aarde se buitenste oppervlak is verdeel in verskeie rigiede segmente, of tektoniese plate , wat oor die oppervlak oor 'n tydperk van miljoene jare. Sowat 71% van die oppervlak is bedek met sout water oseane, met die res wat bestaan ??van kontinente en eilande wat saam baie mere en ander bronne van water wat bydra tot die hidrosfeer . Aarde se pale is meestal gedek met soliede ys ( Antarktika-ys ) of see-ys ( Arktiese ys cap ) die planeet se binnekant bly aktief, met 'n dik laag van relatief vaste mantel , 'n vloeibare buitenste kern wat verwek 'n magnetiese veld, en' n soliede yster binneste kern .

Aarde in wisselwerking met ander voorwerpe in die ruimte, veral die son en die maan . Op die oomblik is, die Aarde wentel om die son een keer elke 366,26 keer dit roteer oor sy eie as, wat gelyk aan 365,26 solar dae, of een sterre jaar . [nota 7 ] Die aarde se as van rotasie is rom heen en weer beweeg 23,4 ° weg van die loodreg van sy orbitaal vliegtuig , seisoenale variasies op die planeet se oppervlak met 'n tydperk van een tropiese jaar (365,24 solar dae) . [26 ] die aarde se enigste bekende natuurlike satelliet, die Maan, wat begin 'n baan om dit omtrent 4,53 miljard jaar gelede, bied oseaan getye, stabiliseer die aksiale kantel verstadig, en geleidelik die planeet se rotasie. Tussen ongeveer 3,8 miljard en 4,1 miljard jaar gelede, het talle asteroïde impak tydens die Laat Swaar bombardement het veroorsaak dat belangrike veranderinge in die omgewing op ' n groter oppervlak.

Beide die minerale hulpbronne van die planeet, sowel as die produkte van die biosfeer , dra hulpbronne wat gebruik word om 'n globale menslike bevolking te ondersteun . Die inwoners is gegroepeer in sowat 200 onafhanklike soewereine state , wat deur middel van diplomasie, reis, handel, en militêre optrede interaksie. menslike kulture ontwikkel het baie menings van die planeet, waaronder die verpersoonliking wees as 'n godheid' n geloof in 'n plat aarde of in die Aarde as die middelpunt van die heelal , en 'n moderne perspektief van die wêreld as' n geïntegreerde omgewing wat vereis dat rentmeesterskap.

Inhoud

Chronologie

Wetenskaplikes is in staat om gedetailleerde inligting oor die planeet se verlede te rekonstrueer. Die vroegste gedateerde Sonnestelsel materiaal 4,5672 was gevorm ± 0,0006 miljard jaar gelede, [27] en met 4,54 miljard jaar gelede (binne 'n onsekerheid van 1% ) [21 ] die aarde en die ander planete in die sonnestelsel gevorm het uit die solar Nebula -'n skyf-vormige massa van die stof en gas wat oorgebly het na die vorming van die son . Hierdie vergadering van die aarde deur die aanwas was dus grootliks binne 10-20 miljoen jaar voltooi . [28 ] Aanvanklik gesmelte, die buitenste laag van die planeet Aarde afgekoel het 'n soliede kors te vorm wanneer die water begin in die atmosfeer versamel. Die maan gevorm het kort daarna, 4,53 miljard jaar gelede. [29]

Die huidige konsensus-model [30] vir is van die maan is die reuse-impak hipotese, waarin die maan is geskep as 'n Mars-grootte voorwerp (soms genoem Theia) met sowat 10% van die aarde se massa [31 ] beïnvloed die Aarde in 'n skrams hou. [32] In hierdie model, sommige van hierdie voorwerp se massa sal saamgesmelt het met die aarde en 'n gedeelte sou gewees het in die ruimte uitgeskiet, maar genoeg materiaal sou gewees het in' n wentelbaan gestuur saamvloei in die Maan.

Moet sing en vulkaniese aktiwiteit vervaardig die oer-atmosfeer van die Aarde. Conde waterdamp , aangevul deur ys en lopende water verskaf deur asteroïdes en die groter proto-planete , komete en trans-Neptunus voorwerpe vervaardig die oseane . [33] Die nuutgevormde Son is slegs 70% van sy huidige ligsterkte , maar bewyse toon dat die vroeë oseane gebly vloeistof 'n teenstrydigheid genaamd die flou jong Sun paradoks . 'N kombinasie van kweekhuis- gasse en hoër sonaktiwiteitsvlak bedien die Aarde se oppervlak temperatuur te verhoog, verhoed dat die oseane vries. [ 34] Deur 3,5 miljard jaar gelede, die aarde se magneetveld is gestig, wat gehelp het om te voorkom dat die atmosfeer van gestroop weg deur die sonwind . [35]

Twee groot modelle voorgestel is vir die tempo van die kontinentale groei : [36 ] bestendige groei van die hedendaagse [37 ] en 'n vinnige groei vroeg in die Aarde se geskiedenis [ 38] Huidige navorsing toon dat die tweede opsie is waarskynlik met ' n vinnige aanvanklike groei van die kontinentale kors [39] gevolg deur 'n langtermyn-bestendige kontinentale gebied. [40] [41] [42] Op tydskale blywende honderde van miljoene jare, die oppervlak voortdurend hervorm as kontinente gevorm en gebreek het. Die kontinente migreer oor die oppervlak, soms die kombinasie van 'n superkontinent te vorm . Sowat 750 miljoen jaar gelede ( Ma ), een van die vroegste bekende supercontinents, Rodinia , het begin om op te breek. Die kontinente later recombined te vorm Pannotia , 600-540 Ma, dan uiteindelik Pangaea , uitmekaar 180 Ma. [43]

Evolusie van die lewe

Hoogs energieke chemie is geglo te 'vervaardig' n self-selfrepliserende molekuul ongeveer 4 miljard jaar gelede en die helfte van 'n miljard jaar later die laaste gemeenskaplike voorouer van alle lewe bestaan. [44] die ontwikkeling van fotosintese toegelaat dat die Son se energie te geoes word direk deur die lewe vorms, die gevolglike suurstof in die atmosfeer versamel en 'n laag osoon ('n vorm van molekulêre suurstof [O 3]) in die boonste atmosfeer gevorm . Die inlywing van die kleiner selle in groter getalle tot gevolg gehad in die ontwikkeling van komplekse selle genoem eukariote . [45 ] Ware meersellige organismes wat gevorm word as die selle in kolonies van toenemend gespesialiseerd geword het. Aangehelp deur die opname van die skadelike ultraviolet straling deur die osoonlaag, die lewe gekoloniseer die oppervlak van die Aarde . [46 ]

Sedert die 1960's, is dit vermoed dat ernstige Ystydperk- aksie tussen 750 en 580 Ma, tydens die Neoproterozoic , bedek baie van die planeet in 'n stuk ys . Hierdie hipotese is die sogenaamde " Snowball Earth ", en is van besondere belang omdat dit die Kambriese ontploffing voorafgegaan het, toe veelsellige vorms van lewe begin vermenigvuldig . [47 ]

Na aanleiding van die Kambriese ontploffing, sowat 535 Ma, is daar vyf groot massa - uitwissings. [ 48 ] Die mees onlangse so ' n geval was 65 Ma, wanneer 'n asteroïed impak gee aanleiding tot die uitwissing van die (nie- Avian ) dinosourusse en ander groot reptiele , maar gespaar het 'n paar klein diere soos soogdiere , wat dan soos shrews . Oor die afgelope 65 miljoen jaar, het zoogdieren lewe gediversifiseerd, en het etlike miljoene jare gelede 'n Afrika-aap-agtige dier soos Orrorin tugenensis het hy die vermoë om regop te staan ??. [49 ] Hierdie enabled hulpmiddel gebruik en aangemoedig kommunikasie wat die voeding en stimulasie wat nodig is vir 'n groter brein, wat toegelaat word om die evolusie van die menslike ras. Die ontwikkeling van die landbou, en dan beskawing, wat toegelaat is om mense om die aarde te beïnvloed in 'n kort tyd soos geen ander vorm van lewe het , [50] wat beide die aard en die omvang van die ander vorms van lewe.

Die huidige patroon van die ystydperke het omtrent 40 Ma en dan versterk tydens die Pleistoseen ongeveer 3 Ma . Hoë- breedtegraad gebiede het sedert ondergaan herhaalde siklusse van vergletsering en ontdooi, die herhaling van elke 40-100,000 jaar. Die laaste kontinentale vergletsering 10,000 jaar gelede geëindig het . [51 ]

Toekomstige

14 miljard jaar tydlyn wat die Son se huidige ouderdom op 4,6 miljard jaar, vanaf 6 miljard jaar Sondag geleidelik warm, steeds 'n rooi dwerg op 10 miljard jaar, "binnekort", gevolg deur sy transformasie in' n wit dwerg-ster
Die lewensiklus van die Son

Die toekoms van die planeet is nou gekoppel aan dié van die Son. As gevolg van die bestendige opeenhoping van helium in die Son se kern, die ster se algehele ligsterkte sal stadig toeneem. Die ligsterkte van die son sal groei met 10% oor die volgende 1.1 Gyr (1.1 biljoen jaar) en met 40% oor die volgende 3,5 Gyr [52] klimaat modelle dui daarop dat die styging in die bestraling bereik die aarde is waarskynlik ernstige gevolge hê . , insluitende die verlies van die planeet se oseane. [53]

Die Aarde se toenemende hoë temperatuur sal die versnel anorganiese CO 2-siklus , die vermindering van sy konsentrasie vlakke dodelik laag vir plante (10 ppm vir C4 fotosintese ) in ongeveer 500 miljoen [24] tot 900 miljoen jaar. Die gebrek aan plantegroei sal lei tot die verlies van suurstof in die atmosfeer, so dierelewe sal binne 'n paar miljoen jaar uitsterf. [54] Na nog 'n miljard jaar sal alle oppervlakwater verdwyn het [25] en die gemiddelde globale temperatuur sal bereik 70 ° C [54] (158 ° F). Die aarde sal na verwagting effektief bewoonbare vir omtrent nog 500 miljoen jaar van daardie punt, [24] hoewel dit kan uitgebrei word tot 2.3 miljard jaar as die stikstof uit die atmosfeer verwyder is. [55] Selfs al is die son is die ewige en stabiele, die voortgesette interne afkoeling van die aarde sal lei tot 'n verlies van baie van sy mede 2 as gevolg van verlaagde vulkanisme , [56 ] en 35% van die water in die oseane sou neerdaal na die mantel as gevolg van verminderde stoom ventilatievlamdovers vanaf middel - Oseaan rante. [57]

Die Sun, as deel van die evolusie , sal 'n rooi reus in ongeveer 5 toeneem. Modelle voorspel dat die son sal uitbrei na ongeveer 250 keer sy huidige radius, ongeveer 1 AU (150,000,000 km). [52] [58] Die Aarde se lot is minder duidelik. As 'n rooi reus, die son sal ongeveer 30% van sy massa verloor, so sonder gety effekte, sal die aarde beweeg na' n wentelbaan 1,7 AU (250,000,000 km) van die Son wanneer die ster bereik dit die maksimum radius. Die planeet was aanvanklik dus verwag omhulsel te ontsnap deur die uitgebreide Son se yl buitenste atmosfeer, maar die meeste, indien nie alle, res van die lewe sou gewees het vernietig word deur die son se verhoogde ligsterkte (piek oor 5000 keer sy huidige vlak). [52] egter 'n 2008 simulasie dui aan dat die aarde se wentelbaan sal verval as gevolg van gety-effekte en sleep, wat veroorsaak dat dit die rooi reus Son se atmosfeer te betree en verdamp. [ 58]

Samestelling en struktuur

Earth is 'n aardse planeet, wat beteken dat dit is' n rotsagtige liggaam, eerder as ' n gas reus soos Jupiter . Dit is die grootste van die vier solar aardse planete in grootte en massa. Van hierdie vier planete, aarde het die hoogste digtheid, die grootste oppervlak- swaartekrag, die sterkste magneetveld, en die vinnigste omwenteling , [59 ] en is die enigste een met 'n aktiewe plaattektoniek . [60 ]

Vorm

Grootte vergelyking van die binneste planete (links na regs) : Mercurius , Venus, Aarde en Mars

Die vorm van die Aarde is baie naby aan dié van 'n oblate sferoïde , 'n gebied afgeplatte langs die as van pool tot pool van so' n aard dat daar ' n uitstulping rondom die ewenaar . [61 ] Hierdie uitstulping resultate van die rotasie van die Aarde, en oorsake die deursnee by die ewenaar te word 43 km groter as die paal na paal deursnee. [62] Die gemiddelde deursnee van die verwysing sferoïde is ongeveer 12.742 km, wat is ongeveer 40.000 km / ? , as die meter was oorspronklik gedefinieer as 1 / 10, 000,000 van die afstand vanaf die ewenaar tot by die Noordpool deur middel van Parys , Frankryk. [63]

Plaaslike topografie afwyk van hierdie geïdealiseerde sferoïde, maar op 'n globale skaal, hierdie afwykings is baie klein: Earth het' n toleransie van sowat een deel in ongeveer 584, of 0,17%, van die verwysing sferoïde, wat minder is as die 0,22% toleransie toegelaat biljart balle . [64] Die grootste afwykings in die rotsagtige oppervlak van die Aarde is Mount Everest (8848 m bo die plaaslike seevlak) en die Mariana Trench (10.911 m onder die plaaslike seevlak ). As gevolg van die ekwatoriale uitdy, die oppervlak plekke verste vanaf die middelpunt van die aarde is die top van die berg Chimborazo in Ecuador en Huascaran in Peru . [65 ] [66 ] [67 ]

Chemiese samestelling van die kors [68]
Saamgestelde Formule Samestelling
Continental Oceanic
silika SiO 2 60,2% 48.6%
alumina Al 2 O 3 15,2% 16,5%
kalk CaO 5,5% 12,3%
magnesia MgO 3,1% 6,8%
yster (II) oksied FeO 3,8% 6,2%
natrium oksied Na 2 O 3.0% 2,6%
kalium oxide K 2 O 2,8% 0,4%
yster (III) oksied Fe 2 O 3 2,5% 2,3%
water H 2 O 1,4% 1,1%
koolstofdioksied CO 2 1,2% 1,4%
titaandioksied TiO 2 0,7% 1,4%
fosfor Pent P 2 O 5 0,2% 0,3%
Totale 99,6% 99,9%

Chemiese samestelling

Die massa van die aarde is ongeveer 5,98 × 10 24 kg. (Dit is meestal saamgestel uit die yster-(32,1%), suurstof (30,1% ) , silikon (15,1% ) , magnesium (13,9% ) , swawel (2,9% ) , nikkel (1,8% ) , kalsium (1,5 % ) en aluminium 1,4%), met die oorblywende 1,2% uit van die spore van ander elemente. As gevolg van massa-segregasie , is die kern streek geglo word hoofsaaklik uit yster (88,8%), met kleiner hoeveelhede nikkel (5,8%), swawel (4,5%), en minder as 1% spoor elemente. [69]

Die geochemikus FW Clarke bereken dat 'n bietjie meer as 47% van die Aarde se kors bestaan ??van suurstof. Die meer algemene rots bestanddele van die Aarde se kors is byna al die oksiede, chloor, swael en fluoor is die enigste belangrike uitsonderings op hierdie en die totale bedrag in 'n rots is gewoonlik veel minder as 1%. Die skoolhoof oksiede silika, alumina, yster oksiede, kalk, magnesia, potas en soda. Die silika funksioneer hoofsaaklik as 'n suur, die vorming van silikate, en al die mees algemene minerale van stollingsgesteentes te word van hierdie aard. Uit 'n berekening is gebaseer op die 1672 ontleding van alle vorme van rotse, Clarke afgelei word dat 99,22% is saamgestel uit 11 oksiede (sien die tabel regs op die). Al die ander bestanddele slegs in baie klein hoeveelhede voorkom. [70]

Interne struktuur

Die binnekant van die aarde, soos dié van die ander aardse planete, is in lae verdeel deur hulle chemiese of fisiese ( rheologische ) eienskappe, maar in teenstelling met die ander aardse planete, dit het 'n duidelike buitenste en binneste kern. Die buitenste laag van die aarde is 'n chemiese verskillende silikaat soliede kors, wat deur 'n hoogs onderlê is viskeuse soliede mantel . Die kors is geskei van die mantel deur die Mohorovi?i? diskontinuïteit , en die dikte van die kors wissel gemiddeld 6 km onder die oseane en 30-50 km op die vastelande. Die kors en die koue, onbeweeglike, top van die boonste mantel is gesamentlik bekend as die litosfeer , en dit is van die litosfeer dat die tektoniese plate bestaan. Onder die litosfeer is die astenosfeer , 'n relatief lae viskositeit laag wat die litosfeer ritte . Belangrike veranderinge in die kristalstruktuur binne die mantel by 410 en 660 kilometer onder die oppervlak voorkom, wat strek van 'n oorgangsone wat skei die boonste en onderste mantel. Onder die mantel, 'n uiters lae viskositeit vloeibare buitekern lê bo 'n stewige innerlike kern . [71 ] Die binneste kern roteer teen 'n effens hoër hoeksnelheid as die res van die planeet, die bevordering deur ,1-,5 ° per jaar . [ 72. ]

Geologiese lae van die Aarde [73]
Aarde kors-kort jas-english.svg

Aarde kort jas van die kern van die eksosfeer. Nie op skaal nie.
Diepte [74]
km
Komponent Layer Digtheid
g / cm 3
0-60 Litosfeer [aantekening 8] -
0-35 Kors [aantekening 9] 2,2-2,9
35-60 Bo mantel 3,4-4,4
35-2890 Mantel 3,4-5,6
100-700 Astenosfeer -
2890-5100 Buitekern 9,9-12,2
5100-6378 Binnekern 12,8-13,1

Verhit

Die aarde se interne hitte kom uit 'n kombinasie van restwarmte van planetêre aanwas (ongeveer 20%) en die hitte wat deur radioaktiewe verval (80%) [75] Die groot hitte-die vervaardiging van isotope in die Aarde kalium - 40, uraan - 238, uraan-235 , en torium-232 . [76] In die middel van die planeet, kan die temperatuur tot 7000 K en die druk kon bereik 360 GPa . [77] Omdat baie van die hitte deur radioaktiewe verval is, het wetenskaplikes glo dat vroeg in die Aarde se geskiedenis, voor isotope met kort halfleeftye het uitgeput is, sou die aarde se hitte produksie veel hoër gewees het. Hierdie ekstra hitte produksie, twee keer die hedendaagse ongeveer 3 biljoen jaar gelede, [75] sou toegeneem het die temperatuur gradiënte binne die Aarde, die verhoging van die tariewe van die mantel konveksie en plaattektoniek, en laat die produksie van stollingsgesteentes soos komatiites wat nie vandag gevorm. [78]

Hedendaagse groot hitte-isotope [79]
Isotoop Verhit vrylating
W / kg isotoop
Half-Life

jaar
Gemiddelde mantel konsentrasie
kg isotoop / kg mantel
Verhit vrylating
W / kg mantel
238 U 9,46 × 10 -5 4,47 × 10 9 30,8 × 10 -9 2,91 × 10 -12
235 U 5,69 × 10 -4 7,04 × 10 8 0,22 × 10 -9 1,25 × 10 -13
232 Do 2,64 × 10 -5 1,40 × 10 10 124 × 10 -9 3,27 × 10 -12
40 K 2,92 × 10 -5 1,25 × 10 9 36,9 × 10 -9 1,08 × 10 -12

Die gemiddelde hitte-verlies uit die aarde is die 87 MW m -2, vir 'n globale hitte verlies van 4,42 × 10 13 W. [ 80] 'n Gedeelte van die termiese energie van die kern is die rigting van die kors deur die mantel pluime vervoer , 'n vorm van konveksie, wat uit upwellings van hoër-temperatuur rock. Hierdie pluime kan produseer hotspots en vloed basalts . [81] Meer van die hitte in die aarde verloor deur plaattektoniek, deur die mantel opwelling wat verband hou met die middel van die oseaan rante. Die finale groot modus van die verlies van hitte deur geleiding deur die litosfeer, waarvan die meeste in die oseane voorkom omdat die kors is daar is baie dunner as dié van die kontinente. [82]

Tektoniese plate

Aarde se plate [83]
Toon die omvang en grense van tektoniese plate, met 'n overlay buitelyne van die vastelande wat hulle ondersteun
Plate naam Ruimte
10 6 km 2
Afrikaanse Plaat [aantekening 10] 78,0
Antarktika Plate 60,9
Indo-Australiese plaat 47,2
Eurasiese plaat 67,8
Noord-Amerikaanse Plaat 75,9
Suid-Amerikaanse Plaat 43,6
Pasifiese plaat 103,3

Die meganies rigiede buitenste laag van die Aarde, die litosfeer, is stukkend in stukke wat tektoniese plate genoem word. Hierdie plate is rigiede segmente wat in verhouding tot mekaar beweeg op een van die drie tipes plaatgrense: konvergente grense , waar twee plate bymekaar kom, Uiteenlopende grense , waar twee plate uitmekaar getrek, en te transformeer grense , waarin twee plate slide verby mekaar lateraal. aardbewings , vulkaniese aktiwiteit, berg-gebou , en die vorming van oseaniese sloot langs hierdie plaatgrense plaasvind. [ 84] Die tektoniese plate ry op die top van die astenosfeer, die soliede maar minder-viskeuse deel van die boonste mantel wat kan vloei en beweeg saam met die plate, [85] en hul beweging is sterk gekoppel met konveksie patrone binne-in die aarde se mantel.

As die tektoniese plate migreer oor die planeet, is die seebodem subducted onder die voorste rand van die plate op die konvergente grense . Op dieselfde tyd, die opwelling van die mantel materiaal by uiteenlopende grense skep middel van die oseaan rante . Die kombinasie van hierdie prosesse op die korrekte manier verwerk voortdurend die oseaniese kors terug in die mantel. As gevolg van die herwinning, die meeste van die oseaanvloer is minder as 100 miljoen jaar in ouderdom. Die oudste oseaniese kors is geleë in die westelike Stille Oseaan, en het 'n geskatte ouderdom van sowat 200 miljoen jaar. [86] [87] In vergelyking, die oudste gedateerde kontinentale kors is 4030 miljoen jaar oud is . [88 ]

Die sewe groot plate is die Stille Oseaan , Noord-Amerikaanse , Eurasiese , van Afrika , die Antarktiese , Indo-Australiese en Suid-Amerikaanse . Ander noemenswaardige plate sluit in die Arabiese plaat, die Karibiese plaat , die Nazca plaat af die weskus van Suid- Amerika en die Scotia Plate in die suidelike Atlantiese Oseaan . Die Australiese plaat saamgesmelt met die Indiese Plaat tussen 50 en 55 miljoen jaar gelede. Die vinnigste bewegende plate is die oseaniese plate, met die Cocos Plate die bevordering van 'n koers van 75 mm / jaar [89] en die Pasifiese Plaat beweeg 52-69 mm / jaar. Aan die ander kant, die stadigste beweeg plaat is die Eurasiese plaat, vorder teen 'n tipiese koers van ongeveer 21 mm / jaar. [90]

Oppervlakte

Die Aarde se terrein wissel baie van plek tot plek. Oor 70,8% [91] van die oppervlak is deur water bedek, met 'n groot deel van die kontinentale plat onder seevlak. Die onder die water oppervlak het bergagtige funksies, met inbegrip van 'n aardbol wat strek van die middel van die oseaan Ridge, sowel as ondersese vulkane, [62 ] oseaniese slote , ondersese canyons , oseaniese plato en diepzee vlaktes. Die oorblywende 29,2% wat nie deur water bedek is nie bestaan ??van die berge, woestyne, vlaktes, plato 's , en ander geomorphologies.

Die oppervlak van die planeet ondergaan reconstruire oor geologiese tydperke as gevolg van tektoniek en erosie . Die oppervlak eienskappe opgebou of vervorm deur plaattektoniek is onderhewig aan die bestendige verwering van neerslag, termiese siklusse, en chemiese effek . vergletsering, kus- erosie , die opbou van koraalriwwe, en 'n groot meteoriet impak [92 ] tree ook op te hervorm landskap.

Die kontinentale kors bestaan ??van 'n laer digtheid materiaal soos die stollingsgesteentes graniet en andesiet . Minder algemeen is basalt , 'n digter vulkaniese rots wat is die primêre bestanddeel van die oseaan vloere. [93] sedimentêre gesteente word gevorm deur die ophoping van sediment wat gekompakteer saam. Byna 75% van die kontinentale oppervlaktes word gedek deur sedimentêre gesteentes, hoewel hulle slegs sowat 5% van die kors vorm. [94] Die derde vorm van rotsmateriaal wat op Aarde is metamorfe gesteente , wat geskep word van die transformasie van die pre- bestaande rotstipes deur hoë druk, hoë temperature, of albei. Die volopste silikaatminerale op die Aarde se oppervlak sluit kwarts , die feldspars , amfibool , mika , pyroxene en olivien . [95] Common karbonaat minerale sluit kalsiet (wat in die kalksteen) en dolomiet . [96 ]

Die pedosphere is die buitenste laag van die aarde wat van die grond bestaan ??en onderhewig aan grondvorming . Dit bestaan ??op die raakvlak van die litosfeer , die atmosfeer , die hidrosfeer en die biosfeer. Tans is die totale bewerkbare grond is 13,31% van die land oppervlak, met slegs 4,71% van die ondersteuning van permanente gewasse . [ 13 van die aarde se grond oppervlak ] Sluit aan 40% word tans gebruik vir cropland en weiding, of 'n beraamde 1,3 × 10 7 km 2 cropland en 3,4 × 10 7 km 2 van die weiveld. [97]

Die hoogte van die grond oppervlak van die Aarde wissel van die laagste punt van -418 m by die Dooie See , 'n 2005-beraamde maksimum hoogte van 8848 m by die top van Mount Everest . Die gemiddelde hoogte van die land bo seevlak is 840 m. [98 ]

Hidrosfeer

Hoogte histogram van die oppervlak van die Aarde

Die oorvloed van water op die aarde se oppervlak is 'n unieke kenmerk wat onderskei tussen die "Blue Planet" van ander in die Sonnestelsel. Die aarde se hidrosfeer bestaan ??hoofsaaklik uit die oseane, maar tegnies sluit alle wateroppervlaktes in die wêreld, insluitend binnelandse seë, mere, riviere en ondergrondse water af tot 'n diepte van 2000 m. Die diepste onderwater plek is Challenger Deep van die Mariana Trench in die Stille Oseaan met 'n diepte van -10,911.4 m. [aantekening 11] [99]

Die massa van die oseane is ongeveer 1,35 × 10 18 ton of 1 / 4400 van die totale massa van die Aarde. Die oseane beslaan 'n oppervlakte van 3,618 x 10 8 km 2 met' n gemiddelde diepte van 3682 m, wat lei tot 'n geskatte volume van 1,332 × 10 9 km 3. [100] As die hele land op Aarde was eweredig versprei, sou die water styg tot 'n hoogte van meer as 2,7 km. [aantekening 12] Oor 97,5% van die water is sout, terwyl die oorblywende 2,5% is vars water. Meeste vars water, ongeveer 68,7%, is tans ys. [101]

Die gemiddelde soutgehalte van die aarde se oseane ongeveer 35 gram sout per kilogram van die see water (35 ). [102] Die meeste van hierdie sout van vulkaniese aktiwiteit is vrygestel of uit die koel, stollings- rotse. [ 103] Die oseane is ook 'n reservoir van ontbind atmosferiese gasse, wat noodsaaklik vir die oorlewing van baie akwatiese lewe vorm. [104] Seewater het 'n belangrike invloed op die wêreld se klimaat, met die oseane wat as' n groot hitte reservoir . [105] Shifts in die oceanisch temperatuur verdeling kan veroorsaak aansienlike weer verskuiwings, soos die El Niño Suidelike Ossillasie . [106]

Sfeer

Die atmosferiese druk op die oppervlak van die Aarde gemiddeldes 101,325 kPa , met 'n skaal hoogte van ongeveer 8,5 km. [3] Dit is 78% stikstof en 21% suurstof, met spore van waterdamp, koolstofdioksied en ander gasvormige molekules. Die hoogte van die troposfeer wissel met breedteligging, wat wissel tussen 8 km by die pole tot 17 km by die ewenaar, met sommige variasie wat as gevolg van weer-en seisoenale faktore. [107]

Aarde se biosfeer het aansienlik verander sy atmosfeer . Oxygenic fotosintese ontwikkel 2,7 miljard jaar gelede, wat die hoofsaaklik stikstof suurstof atmosfeer van vandag. This change enabled the proliferation of aerobic organisms as well as the formation of the ozone layer which blocks ultraviolet solar radiation , permitting life on land. Other atmospheric functions important to life on Earth include transporting water vapor, providing useful gases, causing small meteors to burn up before they strike the surface, and moderating temperature. [ 108 ] This last phenomenon is known as the greenhouse effect : trace molecules within the atmosphere serve to capture thermal energy emitted from the ground, thereby raising the average temperature. Water vapor, carbon dioxide, methane and ozone are the primary greenhouse gases in the Earth's atmosphere. Without this heat-retention effect, the average surface temperature would be ?18 °C and life would likely not exist. [ 91 ]

Weather and climate

The Earth's atmosphere has no definite boundary, slowly becoming thinner and fading into outer space. Three-quarters of the atmosphere's mass is contained within the first 11 km of the planet's surface. This lowest layer is called the troposphere . Energy from the Sun heats this layer, and the surface below, causing expansion of the air. This lower density air then rises, and is replaced by cooler, higher density air. The result is atmospheric circulation that drives the weather and climate through redistribution of heat energy. [ 109 ]

The primary atmospheric circulation bands consist of the trade winds in the equatorial region below 30° latitude and the westerlies in the mid-latitudes between 30° and 60°. [ 110 ] Ocean currents are also important factors in determining climate, particularly the thermohaline circulation that distributes heat energy from the equatorial oceans to the polar regions. [ 111 ]

Water vapor generated through surface evaporation is transported by circulatory patterns in the atmosphere. When atmospheric conditions permit an uplift of warm, humid air, this water condenses and settles to the surface as precipitation . [ 109 ] Most of the water is then transported to lower elevations by river systems and usually returned to the oceans or deposited into lakes. This water cycle is a vital mechanism for supporting life on land, and is a primary factor in the erosion of surface features over geological periods. Precipitation patterns vary widely, ranging from several meters of water per year to less than a millimeter. Atmospheric circulation , topological features and temperature differences determine the average precipitation that falls in each region. [ 112 ]

The amount of solar energy reaching the Earth's decreases with increasing latitude. At higher latitudes the sunlight reaches the surface at a lower angles and it must pass through thicker columns of the atmosphere. As a result, the mean annual air temperature at sea level decreases by about 0.4°C per per degree of latitude away from the equator. [ 113 ] The Earth can be sub-divided into specific latitudinal belts of approximately homogeneous climate. Ranging from the equator to the polar regions, these are the tropical (or equatorial), subtropical , temperate and polar climates. [ 114 ] Climate can also be classified based on the temperature and precipitation, with the climate regions characterized by fairly uniform air masses. The commonly used Köppen climate classification system (as modified by Wladimir Köppen 's student Rudolph Geiger) has five broad groups (humid tropics, arid , humid middle latitudes, continental and cold polar), which are further divided into more specific subtypes. [ 110 ]

Upper atmosphere

This view from orbit shows the full Moon partially obscured and deformed by the Earth's atmosphere. NASA image

Above the troposphere, the atmosphere is usually divided into the stratosphere , mesosphere , and thermosphere . [ 108 ] Each layer has a different lapse rate , defining the rate of change in temperature with height. Beyond these, the exosphere thins out into the magnetosphere , where the Earth's magnetic fields interact with the solar wind . [ 115 ] Within the stratosphere is the ozone layer, a component that partially shields the surface from ultraviolet light and thus is important for life on Earth. The Kármán line , defined as 100 km above the Earth's surface, is a working definition for the boundary between atmosphere and space. [ 116 ]

Thermal energy causes some of the molecules at the outer edge of the Earth's atmosphere have their velocity increased to the point where they can escape from the planet's gravity. This results in a slow but steady leakage of the atmosphere into space . Because unfixed hydrogen has a low molecular weight, it can achieve escape velocity more readily and it leaks into outer space at a greater rate than other gasses. [ 117 ] The leakage of hydrogen into space contributes to the pushing of the Earth from an initially reducing state to its current oxidizing one. Photosynthesis provided a source of free oxygen, but the loss of reducing agents such as hydrogen is believed to have been a necessary precondition for the widespread accumulation of oxygen in the atmosphere. [ 118 ] Hence the ability of hydrogen to escape from the Earth's atmosphere may have influenced the nature of life that developed on the planet. [ 119 ] In the current, oxygen-rich atmosphere most hydrogen is converted into water before it has an opportunity to escape. Instead, most of the hydrogen loss comes from the destruction of methane in the upper atmosphere. [ 120 ]

Magnetic field

Diagram showing the magnetic field lines of the Earth's magnetosphere. The lines are swept back in the anti-solar direction under the influence of the solar wind.
Schematic of Earth's magnetosphere. The solar wind flows from left to right

The Earth's magnetic field is shaped roughly as a magnetic dipole , with the poles currently located proximate to the planet's geographic poles. At the equator of the magnetic field, the magnetic field strength at the planet's surface is 3.05 × 10 ?5 T , with global magnetic dipole moment of 7.91 × 10 15 T m 3 . [ 121 ] According to dynamo theory , the field is generated within the molten outer core region where heat creates convection motions of conducting materials, generating electric currents. These in turn produce the Earth's magnetic field. The convection movements in the core are chaotic; the magnetic poles drift and periodically change alignment. This results in field reversals at irregular intervals averaging a few times every million years. The most recent reversal occurred approximately 700,000 years ago. [ 122 ] [ 123 ]

The field forms the magnetosphere , which deflects particles in the solar wind . The sunward edge of the bow shock is located at about 13 times the radius of the Earth. The collision between the magnetic field and the solar wind forms the Van Allen radiation belts , a pair of concentric, torus -shaped regions of energetic charged particles . When the plasma enters the Earth's atmosphere at the magnetic poles, it forms the aurora . [ 124 ]

Orbit and rotation

Rotation

Earth's axial tilt (or obliquity ) and its relation to the rotation axis and plane of orbit

Earth's rotation period relative to the Sun—its mean solar day—is 86,400 seconds of mean solar time (86,400.0025 SI seconds). [ 125 ] As the Earth's solar day is now slightly longer than it was during the 19th century because of tidal acceleration , each day varies between 0 and 2 SI ms longer. [ 126 ] [ 127 ]

Earth's rotation period relative to the fixed stars , called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86164.098903691 seconds of mean solar time (UT1), or 23 h 56 m 4.098903691 s . [ 2 ] [ note 13 ] Earth's rotation period relative to the precessing or moving mean vernal equinox , misnamed its sidereal day , is 86164.09053083288 seconds of mean solar time (UT1) (23 h 56 m 4.09053083288 s ) . [ 2 ] Thus the sidereal day is shorter than the stellar day by about 8.4 ms. [ 128 ] The length of the mean solar day in SI seconds is available from the IERS for the periods 1623–2005 [ 129 ] and 1962–2005. [ 130 ]

Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent motion of celestial bodies in the Earth's sky is to the west at a rate of 15°/h = 15'/min. For bodies near the celestial equator , this is equivalent to an apparent diameter of the Sun or Moon every two minutes; from the planet's surface, the apparent sizes of the Sun and the Moon are approximately the same. [ 131 ] [ 132 ]

Orbit

Earth orbits the Sun at an average distance of about 150 million kilometers every 365.2564 mean solar days, or one sidereal year . From Earth, this gives an apparent movement of the Sun eastward with respect to the stars at a rate of about 1°/day, or a Sun or Moon diameter, every 12 hours. Because of this motion, on average it takes 24 hours—a solar day —for Earth to complete a full rotation about its axis so that the Sun returns to the meridian . The orbital speed of the Earth averages about 29.8 km/s (107,000 km/h), which is fast enough to cover the planet's diameter (about 12,600 km) in seven minutes, and the distance to the Moon (384,000 km) in four hours. [ 3 ]

The Moon revolves with the Earth around a common barycenter every 27.32 days relative to the background stars. When combined with the Earth–Moon system's common revolution around the Sun, the period of the synodic month , from new moon to new moon, is 29.53 days. Viewed from the celestial north pole , the motion of Earth, the Moon and their axial rotations are all counter-clockwise . Viewed from a vantage point above the north poles of both the Sun and the Earth, the Earth appears to revolve in a counterclockwise direction about the Sun. The orbital and axial planes are not precisely aligned: Earth's axis is tilted some 23.4 degrees from the perpendicular to the Earth–Sun plane, and the Earth–Moon plane is tilted about 5 degrees against the Earth-Sun plane. Without this tilt, there would be an eclipse every two weeks, alternating between lunar eclipses and solar eclipses . [ 3 ] [ 133 ]

The Hill sphere , or gravitational sphere of influence, of the Earth is about 1.5 Gm (or 1,500,000 kilometers) in radius. [ 134 ] [ note 14 ] This is maximum distance at which the Earth's gravitational influence is stronger than the more distant Sun and planets. Objects must orbit the Earth within this radius, or they can become unbound by the gravitational perturbation of the Sun.

Barred spiral galaxy
Illustration of the Milky Way Galaxy , showing the location of the Sun

Earth, along with the Solar System, is situated in the Milky Way galaxy , orbiting about 28,000 light years from the center of the galaxy. It is currently about 20 light years above the galaxy's equatorial plane in the Orion spiral arm . [ 135 ]

Axial tilt and seasons

Because of the axial tilt of the Earth, the amount of sunlight reaching any given point on the surface varies over the course of the year. This results in seasonal change in climate, with summer in the northern hemisphere occurring when the North Pole is pointing toward the Sun, and winter taking place when the pole is pointed away. During the summer, the day lasts longer and the Sun climbs higher in the sky. In winter, the climate becomes generally cooler and the days shorter. Above the Arctic Circle , an extreme case is reached where there is no daylight at all for part of the year—a polar night . In the southern hemisphere the situation is exactly reversed, with the South Pole oriented opposite the direction of the North Pole.

Black space with crescent Earth at lower left, crescent Moon at upper right, 30% of Earth's apparent diameter; five Earth diameters apparent space between; sunlit from right side
Earth and Moon from Mars, imaged by Mars Reconnaissance Orbiter . From space, the Earth can be seen to go through phases similar to the phases of the Moon.

By astronomical convention, the four seasons are determined by the solstices —the point in the orbit of maximum axial tilt toward or away from the Sun—and the equinoxes , when the direction of the tilt and the direction to the Sun are perpendicular. In the northern hemisphere, Winter Solstice occurs on about December 21, Summer Solstice is near June 21, Spring Equinox is around March 20 and Autumnal Equinox is about September 23. In the Southern hemisphere, the situation is reversed, with the Summer and Winter Solstices exchanged and the Spring and Autumnal Equinox dates switched. [ 136 ]

The angle of the Earth's tilt is relatively stable over long periods of time. However, the tilt does undergo nutation ; a slight, irregular motion with a main period of 18.6 years. [ 137 ] The orientation (rather than the angle) of the Earth's axis also changes over time, precessing around in a complete circle over each 25,800 year cycle; this precession is the reason for the difference between a sidereal year and a tropical year . Both of these motions are caused by the varying attraction of the Sun and Moon on the Earth's equatorial bulge. From the perspective of the Earth, the poles also migrate a few meters across the surface. This polar motion has multiple, cyclical components, which collectively are termed quasiperiodic motion . In addition to an annual component to this motion, there is a 14-month cycle called the Chandler wobble . The rotational velocity of the Earth also varies in a phenomenon known as length of day variation. [ 138 ]

In modern times, Earth's perihelion occurs around January 3, and the aphelion around July 4. However, these dates change over time due to precession and other orbital factors, which follow cyclical patterns known as Milankovitch cycles . The changing Earth-Sun distance results in an increase of about 6.9% [ note 15 ] in solar energy reaching the Earth at perihelion relative to aphelion. Since the southern hemisphere is tilted toward the Sun at about the same time that the Earth reaches the closest approach to the Sun, the southern hemisphere receives slightly more energy from the Sun than does the northern over the course of a year. However, this effect is much less significant than the total energy change due to the axial tilt, and most of the excess energy is absorbed by the higher proportion of water in the southern hemisphere. [ 139 ]

Moon

Characteristics
Diameter 3,474.8 km
Mass 7.349 × 10 22 kg
Semi-major axis 384,400 km
Orbital period 27 d 7 h 43.7 m

The Moon is a relatively large, terrestrial , planet-like satellite, with a diameter about one-quarter of the Earth's. It is the largest moon in the Solar System relative to the size of its planet, although Charon is larger relative to the dwarf planet Pluto . The natural satellites orbiting other planets are called "moons" after Earth's Moon.

The gravitational attraction between the Earth and Moon causes tides on Earth. The same effect on the Moon has led to its tidal locking : its rotation period is the same as the time it takes to orbit the Earth. As a result, it always presents the same face to the planet. As the Moon orbits Earth, different parts of its face are illuminated by the Sun, leading to the lunar phases ; the dark part of the face is separated from the light part by the solar terminator .

Because of their tidal interaction , the Moon recedes from Earth at the rate of approximately 38 mm a year. Over millions of years, these tiny modifications—and the lengthening of Earth's day by about 23 µs a year—add up to significant changes. [ 140 ] During the Devonian period, for example, (approximately 410 million years ago) there were 400 days in a year, with each day lasting 21.8 hours. [ 141 ]

Details of the Earth-Moon system. Besides the radius of each object, the radius to the Earth-Moon barycenter is shown. Photos from NASA . Data from NASA . The Moon's axis is located by Cassini's third law .

The Moon may have dramatically affected the development of life by moderating the planet's climate. Paleontological evidence and computer simulations show that Earth's axial tilt is stabilized by tidal interactions with the Moon. [ 142 ] Some theorists believe that without this stabilization against the torques applied by the Sun and planets to the Earth's equatorial bulge, the rotational axis might be chaotically unstable, exhibiting chaotic changes over millions of years, as appears to be the case for Mars. [ 143 ]

Viewed from Earth, the Moon is just far enough away to have very nearly the same apparent-sized disk as the Sun. The angular size (or solid angle ) of these two bodies match because, although the Sun's diameter is about 400 times as large as the Moon's, it is also 400 times more distant. [ 132 ] This allows total and annular solar eclipses to occur on Earth.

The most widely accepted theory of the Moon's origin, the giant impact theory , states that it formed from the collision of a Mars-size protoplanet called Theia with the early Earth. This hypothesis explains (among other things) the Moon's relative lack of iron and volatile elements, and the fact that its composition is nearly identical to that of the Earth's crust. [ 144 ]

Earth has at least five co-orbital asteroids , including 3753 Cruithne and 2002 AA 29 . [ 145 ] [ 146 ] As of 2011, there are 931 operational, man-made satellites orbiting the Earth. [ 147 ] On July 27, 2011, astronomers reported a trojan asteroid companion, 2010 TK7 , librating around the leading Lagrange triangular point , L4, of Earth in Earth's orbit around the Sun . [ 148 ] [ 149 ]

A scale representation of the relative sizes of, and average distance between, Earth and Moon

Habitability

A planet that can sustain life is termed habitable, even if life did not originate there. The Earth provides liquid water—an environment where complex organic molecules can assemble and interact, and sufficient energy to sustain metabolism . [ 150 ] The distance of the Earth from the Sun, as well as its orbital eccentricity, rate of rotation, axial tilt, geological history, sustaining atmosphere and protective magnetic field all contribute to the current climactic conditions at the surface. [ 151 ]

Biosphere

The planet's life forms are sometimes said to form a "biosphere". This biosphere is generally believed to have begun evolving about 3.5 billion years ago. The biosphere is divided into a number of biomes , inhabited by broadly similar plants and animals. On land, biomes are separated primarily by differences in latitude, height above sea level and humidity . Terrestrial biomes lying within the Arctic or Antarctic Circles , at high altitudes or in extremely arid areas are relatively barren of plant and animal life; species diversity reaches a peak in humid lowlands at equatorial latitudes . [ 152 ]

Natural resources and land use

The Earth provides resources that are exploitable by humans for useful purposes. Some of these are non-renewable resources , such as mineral fuels , that are difficult to replenish on a short time scale.

Large deposits of fossil fuels are obtained from the Earth's crust, consisting of coal, petroleum, natural gas and methane clathrate . These deposits are used by humans both for energy production and as feedstock for chemical production. Mineral ore bodies have also been formed in Earth's crust through a process of Ore genesis , resulting from actions of erosion and plate tectonics. [ 153 ] These bodies form concentrated sources for many metals and other useful elements .

The Earth's biosphere produces many useful biological products for humans, including (but far from limited to) food, wood, pharmaceuticals , oxygen, and the recycling of many organic wastes. The land-based ecosystem depends upon topsoil and fresh water, and the oceanic ecosystem depends upon dissolved nutrients washed down from the land. [ 154 ] Humans also live on the land by using building materials to construct shelters. In 1993, human use of land is approximately:

Land use Arable land Permanent crops Permanent pastures Forests and woodland Urban areas Ander
Percentage 13.13% [ 13 ] 4.71% [ 13 ] 26% 32% 1.5% 30%

The estimated amount of irrigated land in 1993 was 2,481,250 km 2 . [ 13 ]

Natural and environmental hazards

Large areas of the Earth's surface are subject to extreme weather such as tropical cyclones , hurricanes , or typhoons that dominate life in those areas. From 1980–2000, these events caused an average of 11,800 deaths per year. [ 155 ] Many places are subject to earthquakes , landslides , tsunamis , volcanic eruptions , tornadoes , sinkholes , blizzards , floods, droughts, wildfires , and other calamities and disasters.

Many localized areas are subject to human-made pollution of the air and water, acid rain and toxic substances, loss of vegetation ( overgrazing , deforestation , desertification ), loss of wildlife, species extinction, soil degradation , soil depletion, erosion, and introduction of invasive species .

According to the United Nations , a scientific consensus exists linking human activities to global warming due to industrial carbon dioxide emissions. This is predicted to produce changes such as the melting of glaciers and ice sheets, more extreme temperature ranges, significant changes in weather and a global rise in average sea levels . [ 156 ]

Human geography

North AmericaSouth AmericaAntarcticaAfricaEuropeAsiaOceaniaOceansContinents vide couleurs.png
Oor hierdie beeld

Cartography , the study and practice of map making, and vicariously geography , have historically been the disciplines devoted to depicting the Earth. Surveying , the determination of locations and distances, and to a lesser extent navigation , the determination of position and direction, have developed alongside cartography and geography, providing and suitably quantifying the requisite information.

Earth has approximately 6,910,000,000 human inhabitants as of April 25, 2011. [ 157 ] Projections indicate that the world's human population will reach 7 billion in early 2012 and 9.2 billion in 2050. [ 158 ] Most of the growth is expected to take place in developing nations . Human population density varies widely around the world, but a majority live in Asia . By 2020, 60% of the world's population is expected to be living in urban, rather than rural, areas. [ 159 ]

It is estimated that only one-eighth of the surface of the Earth is suitable for humans to live on—three-quarters is covered by oceans, and half of the land area is either desert (14%), [ 160 ] high mountains (27%), [ 161 ] or other less suitable terrain. The northernmost permanent settlement in the world is Alert , on Ellesmere Island in Nunavut , Canada. [ 162 ] (82°28?N) The southernmost is the Amundsen-Scott South Pole Station , in Antarctica, almost exactly at the South Pole. (90°S)

The Earth at night, a composite of DMSP /OLS ground illumination data on a simulated night-time image of the world. This image is not photographic and many features are brighter than they would appear to a direct observer.

Independent sovereign nations claim the planet's entire land surface, except for some parts of Antarctica and the odd unclaimed area of Bir Tawil between Egypt and Sudan. As of 2011 there are 204 sovereign states , including the 193 United Nations member states . In addition, there are 59 dependent territories , and a number of autonomous areas , territories under dispute and other entities. [ 13 ] Historically, Earth has never had a sovereign government with authority over the entire globe, although a number of nation-states have striven for world domination and failed. [ 163 ]

The United Nations is a worldwide intergovernmental organization that was created with the goal of intervening in the disputes between nations, thereby avoiding armed conflict. [ 164 ] It is not, however, a world government. The UN serves primarily as a forum for international diplomacy and international law . When the consensus of the membership permits, it provides a mechanism for armed intervention. [ 165 ]

The first human to orbit the Earth was Yuri Gagarin on April 12, 1961. [ 166 ] In total, about 400 people visited outer space and reached Earth orbit as of 2004, and, of these, twelve have walked on the Moon. [ 167 ] [ 168 ] [ 169 ] Normally the only humans in space are those on the International Space Station . The station's crew, currently six people, is usually replaced every six months. [ 170 ] The furthest humans have travelled from Earth is 400,171 km, achieved during the 1970 Apollo 13 mission. [ 171 ]

Cultural viewpoint

The first photograph ever taken by astronauts of an " Earthrise ", from Apollo 8

The name "Earth" derives from the Anglo-Saxon word erda , which means ground or soil, and is related to the German word Erde . It became eorthe later, and then erthe in Middle English . [ 172 ] The standard astronomical symbol of the Earth consists of a cross circumscribed by a circle. [ 173 ]

Unlike the rest of the planets in the Solar System, humankind did not begin to view the Earth as a moving object in orbit around the Sun until the 16th century. [ 174 ] Earth has often been personified as a deity, in particular a goddess. In many cultures the mother goddess is also portrayed as a fertility deity . Creation myths in many religions recall a story involving the creation of the Earth by a supernatural deity or deities. A variety of religious groups, often associated with fundamentalist branches of Protestantism [ 175 ] or Islam, [ 176 ] assert that their interpretations of these creation myths in sacred texts are literal truth and should be considered alongside or replace conventional scientific accounts of the formation of the Earth and the origin and development of life. [ 177 ] Such assertions are opposed by the scientific community [ 178 ] [ 179 ] and by other religious groups. [ 180 ] [ 181 ] [ 182 ] A prominent example is the creation-evolution controversy .

In the past there were varying levels of belief in a flat Earth , [ 183 ] but this was displaced by the concept of a spherical Earth due to observation and circumnavigation. [ 184 ] The human perspective regarding the Earth has changed following the advent of spaceflight, and the biosphere is now widely viewed from a globally integrated perspective. [ 185 ] [ 186 ] This is reflected in a growing environmental movement that is concerned about humankind's effects on the planet. [ 187 ]

Sien ook


Notas

  1. ^ All astronomical quantities vary, both secularly and periodically . The quantities given are the values at the instant J2000.0 of the secular variation, ignoring all periodic variations.
  2. ^ a b aphelion = a × (1 + e ); perihelion = a × (1 - e ), where a is the semi-major axis and e is the eccentricity.
  3. ^ The reference lists the longitude of the ascending node as -11.26064°, which is equivalent to 348.73936° by the fact that any angle is equal to itself plus 360°.
  4. ^ The reference lists the longitude of perihelion , which is the sum of the longitude of the ascending node and the argument of perihelion. That is, 114.20783° + (-11.26064°) = 102.94719°.
  5. ^ Due to natural fluctuations, ambiguities surrounding ice shelves , and mapping conventions for vertical datums , exact values for land and ocean coverage are not meaningful. Based on data from the Vector Map and Global Landcover datasets, extreme values for coverage of lakes and streams are 0.6% and 1.0% of the Earth's surface. The ice shields of Antarctica and Greenland are counted as land, even though much of the rock which supports them lies below sea level.
  6. ^ By International Astronomical Union convention, the term terra is used only for naming extensive land masses on celestial bodies other than the Earth. Cf. Blue, Jennifer (2007-07-05). "Descriptor Terms (Feature Types)" . Gazetteer of Planetary Nomenclature . USGS . http://planetarynames.wr.usgs.gov/jsp/append5.jsp . Retrieved 2007-07-05 .  
  7. ^ The number of solar days is one less than the number of sidereal days because the orbital motion of the Earth about the Sun results in one additional revolution of the planet about its axis.
  8. ^ Locally varies between 5 and 200 km.
  9. ^ Locally varies between 5 and 70 km.
  10. ^ Including the Somali Plate , which is currently in the process of formation out of the African Plate. See: Chorowicz, Jean (October 2005). "The East African rift system". Journal of African Earth Sciences 43 (1–3): 379–410. Bibcode 2005JAfES..43..379C . doi : 10.1016/j.jafrearsci.2005.07.019 .  
  11. ^ This is the measurement taken by the vessel Kaik? in March 1995 and is believed to be the most accurate measurement to date. See the Challenger Deep article for more details.
  12. ^ The total surface area of the Earth is 5.1 × 10 8 km 2 . To first approximation, the average depth would be the ratio of the two, or 2.7 km.
  13. ^ Aoki, the ultimate source of these figures, uses the term "seconds of UT1" instead of "seconds of mean solar time".— Aoki, S. (1982). "The new definition of universal time". Astronomy and Astrophysics 105 (2): 359–361. Bibcode 1982A&A...105..359A .  
  14. ^ For the Earth, the Hill radius is
    \begin{smallmatrix} R_H = a\left ( \frac{m}{3M} \right )^{\frac{1}{3}} \end{smallmatrix} ,
    where m is the mass of the Earth, a is an Astronomical Unit, and M is the mass of the Sun. So the radius in AU is about: \begin{smallmatrix} \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01 \end{smallmatrix} .
  15. ^ Aphelion is 103.4% of the distance to perihelion. Due to the inverse square law, the radiation at perihelion is about 106.9% the energy at aphelion.

Verwysings

  1. ^ a b Standish, E. Myles; Williams, James C.. "Orbital Ephemerides of the Sun, Moon, and Planets" (PDF). International Astronomical Union Commission 4: (Ephemerides) . http://iau-comm4.jpl.nasa.gov/XSChap8.pdf . Retrieved 2010-04-03 .   See table 8.10.2. Calculation based upon 1 AU = 149,597,870,700(3) m.
  2. ^ a b c d Staff (2007-08-07). "Useful Constants" . International Earth Rotation and Reference Systems Service . http://hpiers.obspm.fr/eop-pc/models/constants.html . Retrieved 2008-09-23 .  
  3. ^ a b c d e f g h i j k l m n Williams, David R. (2004-09-01). "Earth Fact Sheet" . NASA . http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html . Retrieved 2010-08-09 .  
  4. ^ Allen, Clabon Walter; Cox, Arthur N. (2000). Allen's Astrophysical Quantities . Springer. p. 294. ISBN 0-387-98746-0 . http://books.google.com/?id=w8PK2XFLLH8C&pg=PA294 . Retrieved 2011-03-13 .  
  5. ^ US Space Command (March 1, 2001). "Reentry Assessment - US Space Command Fact Sheet" . SpaceRef Interactive . http://www.spaceref.com/news/viewpr.html?pid=4008 . Retrieved 2011-05-07 .  
  6. ^ Various (2000). David R. Lide. ed. Handbook of Chemistry and Physics (81st ed.). CRC. ISBN 0-8493-0481-4 .  
  7. ^ "Selected Astronomical Constants, 2011" . The Astronomical Almanac . http://asa.usno.navy.mil/SecK/2011/Astronomical_Constants_2011.txt . Retrieved 2011-02-25 .  
  8. ^ a b World Geodetic System ( WGS-84 ). Available online from National Geospatial-Intelligence Agency .
  9. ^ Cazenave, Anny (1995). "Geoid, Topography and Distribution of Landforms" . In Ahrens, Thomas J (PDF). Global earth physics a handbook of physical constants . Washington, DC: American Geophysical Union. ISBN 0-87590-851-9 . Archived from the original on Retrieved 2008-08-03 .  
  10. ^ IERS Working Groups (2003). "General Definitions and Numerical Standards" . In McCarthy, Dennis D.; Petit, Gérard. IERS Technical Note No. 32 . US Naval Observatory and Bureau International des Poids et Mesures . http://www.iers.org/MainDisp.csl?pid=46-25776 . Retrieved 2008-08-03 .  
  11. ^ Humerfelt, Sigurd (October 26, 2010). "How WGS 84 defines Earth" . http://home.online.no/~sigurdhu/WGS84_Eng.html . Retrieved 2011-04-29 .  
  12. ^ Pidwirny, Michael (2006-02-02). Surface area of our planet covered by oceans and continents.(Table 8o-1) . University of British Columbia, Okanagan . http://www.physicalgeography.net/fundamentals/8o.html . Retrieved 2007-11-26 .  
  13. ^ a b c d e f Staff (2008-07-24). "World" . The World Factbook . Central Intelligence Agency . https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html . Retrieved 2008-08-05 .  
  14. ^ Yoder, Charles F. (1995). TJ Ahrens. ed. Global Earth Physics: A Handbook of Physical Constants . Washington: American Geophysical Union. p. 12. ISBN 0-87590-851-9 . Archived from the original on 2007-03-08 . http://replay.waybackmachine.org/20090421092502/http://www.agu.org/reference/gephys.html . Retrieved 2007-03-17 .  
  15. ^ Allen, Clabon Walter; Cox, Arthur N. (2000). Allen's Astrophysical Quantities . Springer. p. 296. ISBN 0-387-98746-0 . http://books.google.com/?id=w8PK2XFLLH8C&pg=PA296 . Retrieved 2010-08-17 .  
  16. ^ Arthur N. Cox, ed (2000). Allen's Astrophysical Quantities (4th ed.). New York: AIP Press. p. 244. ISBN 0-387-98746-0 . http://books.google.com/?id=w8PK2XFLLH8C&pg=PA244 . Retrieved 2010-08-17 .  
  17. ^ "World: Lowest Temperature" . WMO Weather and Climate Extremes Archive . Arizona State University . http://wmo.asu.edu/world-lowest-temperature . Retrieved 2010-08-07 .  
  18. ^ Kinver, Mark (December 10, 2009). "Global average temperature may hit record level in 2010" . BBC Online . http://news.bbc.co.uk/2/hi/science/nature/8406839.stm . Retrieved 2010-04-22 .  
  19. ^ "World: Highest Temperature" . WMO Weather and Climate Extremes Archive . Arizona State University . http://wmo.asu.edu/world-highest-temperature . Retrieved 2010-08-07 .  
  20. ^ Drinkwater, Mark; Kerr, Yann; Font, Jordi; Berger, Michael (February 2009). "Exploring the Water Cycle of the 'Blue Planet': The Soil Moisture and Ocean Salinity (SMOS) mission" . ESA Bulletin ( European Space Agency ) (137): 6–15 . http://www.esa.int/esapub/bulletin/bulletin137/bul137b_drinkwater.pdf . "A view of Earth, the 'Blue Planet' [...] When astronauts first went into the space, they looked back at our Earth for the first time, and called our home the 'Blue Planet'.".  
  21. ^ a b See:
  22. ^ May, Robert M. (1988). "How many species are there on earth?". Science 241 (4872): 1441–1449. Bibcode 1988Sci...241.1441M . doi : 10.1126/science.241.4872.1441 . PMID 17790039 .  
  23. ^ Harrison, Roy M.; Hester, Ronald E. (2002). Causes and Environmental Implications of Increased UV-B Radiation . Royal Society of Chemistry. ISBN 0-85404-265-2 .  
  24. ^ a b c Britt, Robert (2000-02-25). "Freeze, Fry or Dry: How Long Has the Earth  
  25. ^ a b Carrington, Damian (2000-02-21). "Date set for desert Earth" . BBC News . http://news.bbc.co.uk/1/hi/sci/tech/specials/washington_2000/649913.stm . Retrieved 2007-03-31 .  
  26. ^ Yoder, Charles F. (1995). TJ Ahrens. ed. Global Earth Physics: A Handbook of Physical Constants . Washington: American Geophysical Union. p. Retrieved 2007-03-17 .  
  27. ^ Bowring, S.; Housh, T. (1995). "The Earth's early evolution". Science 269 (5230): 1535. Bibcode 1995Sci...269.1535B . doi : 10.1126/science.7667634 . PMID 7667634 .  
  28. ^ Yin, Qingzhu; Jacobsen, SB; Yamashita, K.; Blichert-Toft, J.; Télouk, P.; Albarède, F. (2002). "A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites". Nature 418 (6901): 949–952. Bibcode 2002Natur.418..949Y . doi : 10.1038/nature00995 . PMID 12198540 .  
  29. ^ Kleine, Thorsten; Palme, Herbert; Mezger, Klaus; Halliday, Alex N. (2005-11-24). "Hf-W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon". Science 310 (5754): 1671–1674. Bibcode 2005Sci...310.1671K . doi : 10.1126/science.1118842 . PMID 16308422 .  
  30. ^ Reilly, Michael (October 22, 2009). "Controversial Moon Origin Theory Rewrites History" . http://news.discovery.com/space/moon-earth-formation.html . Retrieved 2010-01-30 .  
  31. ^ Canup, RM; Asphaug, E. (Fall Meeting 2001). "An impact origin of the Earth-Moon system". Abstract #U51A-02 . American Geophysical Union. Bibcode 2001AGUFM.U51A..02C .  
  32. ^ Canup, R.; Asphaug, E. (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation" . Nature 412 (6848):  
  33. ^ Morbidelli, A. et al. (2000). "Source regions and time scales for the delivery of water to Earth". Meteoritics & Planetary Science 35 (6): 1309–1320. Bibcode 2000M&PS...35.1309M . doi : 10.1111/j.1945-5100.2000.tb01518.x .  
  34. ^ Guinan, EF; Ribas, I.. "Our Changing Sun: The Role of Solar Nuclear Evolution and Magnetic Activity on Earth's Atmosphere and Climate". In Benjamin Montesinos, Alvaro Gimenez and Edward F. Guinan. ASP Conference Proceedings: The Evolving Sun and its Influence on Planetary Environments . San Francisco: Astronomical Society of the Pacific. Bibcode 2002ASPC..269...85G . ISBN 1-58381-109-5 .  
  35. ^ Staff (March 4, 2010). "Oldest measurement of Earth's magnetic field reveals battle between Sun and Earth for our atmosphere" . Physorg.news . http://www.physorg.com/news186922627.html . Retrieved 2010-03-27 .  
  36. ^ Rogers, John James William; Santosh, M. (2004). Continents and Supercontinents . Oxford University Press US. p. 48. ISBN 0-19-516589-6 .  
  37. ^ Hurley, PM (Jun 1969). "Pre-drift continental nuclei". Science 164 (3885): 1229–1242. Bibcode 1969Sci...164.1229H . doi : 10.1126/science.164.3885.1229 . PMID 17772560 .  
  38. ^ Armstrong, RL (1968). "A model for the evolution of strontium and lead isotopes in a dynamic earth". Reviews of Geophysics 6 (2): 175–199. Bibcode 1968RvGSP...6..175A . doi : 10.1029/RG006i002p00175 .  
  39. ^ De Smet, J. (2000). "Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle". Tectonophysics 322 (1-2): 19. Bibcode 2000Tectp.322...19D . doi : 10.1016/S0040-1951(00)00055-X .  
  40. ^ Harrison, T. et al. (December 2005). "Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 ga". Science 310 (5756): 1947–50. Bibcode 2005Sci...310.1947H . doi : 10.1126/science.1117926 . PMID 16293721 .  
  41. ^ Hong, D. (2004). "Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt". Journal of Asian Earth Sciences 23 (5): 799. Bibcode 2004JAESc..23..799H . doi : 10.1016/S1367-9120(03)00134-2 .  
  42. ^ Armstrong, RL (1991). "The persistent myth of crustal growth". Australian Journal of Earth Sciences 38 (5): 613–630. Bibcode 1991AuJES..38..613A . doi : 10.1080/08120099108727995 .  
  43. ^ Murphy, JB; Nance, RD (1965). "How do supercontinents assemble?" . American Scientist 92 (4): 324–33. doi : 10.1511/2004.4.324 . http://scienceweek.com/2004/sa040730-5.htm . Retrieved 2007-03-05 .  
  44. ^ Doolittle, W. Ford; Worm, Boris (February 2000). "Uprooting the tree of life" . Scientific American 282 (6): 90–95 . http://shiva.msu.montana.edu/courses/mb437_537_2005_fall/docs/uprooting.pdf .  
  45. ^ Berkner, LV; Marshall, LC (1965). "On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere". Journal of Atmospheric Sciences 22 (3): 225–261. Bibcode 1965JAtS...22..225B . doi : 10.1175/1520-0469(1965)022<0225:OTOARO>2.0.CO;2 .  
  46. ^ Burton, Kathleen (2002-11-29). "Astrobiologists Find Evidence of Early Life on Land" . NASA . http://www.nasa.gov/centers/ames/news/releases/2000/00_79AR.html . Retrieved 2007-03-05 .  
  47. ^ Kirschvink, JL (1992). Schopf, JW; Klein, C. and Des Maris, D. ed. Late Proterozoic low-latitude global glaciation: the Snowball Earth . The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press. pp. 51–52. ISBN 0-521-36615-1 .  
  48. ^ Raup, DM; Sepkoski, JJ (1982). "Mass Extinctions in the Marine Fossil Record". Science 215 (4539): 1501–1503. Bibcode 1982Sci...215.1501R . doi : 10.1126/science.215.4539.1501 . PMID 17788674 .  
  49. ^ Gould, Stephan J. (October 1994). "The Evolution of Life on Earth" . Scientific American . http://brembs.net/gould.html . Retrieved 2007-03-05 .  
  50. ^ Wilkinson, BH; McElroy, BJ (2007). "The impact of humans on continental erosion and sedimentation" . Bulletin of the Geological Society of America 119 (1–2): 140–156. doi : 10.1130/B25899.1 . http://bulletin.geoscienceworld.org/cgi/content/abstract/119/1-2/140 . Retrieved 2007-04-22 .  
  51. ^ Staff. "Paleoclimatology – The Study of Ancient Climates" . Page Paleontology Science Center . http://www.lakepowell.net/sciencecenter/paleoclimate.htm . Retrieved 2007-03-02 .  
  52. ^ a b c Sackmann, I.-J.; Boothroyd, AI; Kraemer, KE (1993). "Our Sun. III. Present and Future" (PDF). Astrophysical Journal 418 : 457–468. Bibcode 1993ApJ...418..457S . doi : 10.1086/173407 .  
  53. ^ Kasting, JF (1988). "Runaway and Moist Greenhouse Atmospheres and the Evolution of Earth and Venus". Icarus 74 (3): 472–494. Bibcode 1988Icar...74..472K . doi : 10.1016/0019-1035(88)90116-9 . PMID 11538226 .  
  54. ^ a b Ward, Peter D.; Brownlee, Donald (2002). The Life and Death of Planet Earth: How the New Science of Astrobiology Charts the Ultimate Fate of Our World . New York: Times Books, Henry Holt and Company. ISBN 0-8050-6781-7 .  
  55. ^ Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Yuk L. (2009). "Atmospheric Pressure as a Natural Climate Regulator for a Terrestrial Planet with a Biosphere" . Proceedings of the National Academy of Sciences 1–6 (24): Retrieved 2009-07-19 .  
  56. ^ Guillemot, H.; Greffoz, V. (March 2002). "Ce que sera la fin du monde" (in French). Science et Vie N° 1014 .  
  57. ^ Bounama, Christine; Franck, S.; Von Bloh, W. (2001). "The fate of Earth's ocean" . Hydrology and Earth System Sciences (Germany: Potsdam Institute for Climate Impact Research) 5 (4): Retrieved 2009-07-03 .  
  58. ^ a b Schröder, K.-P.; Connon Smith, Robert (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society 386 (1): 155. arXiv : 0801.4031 . Bibcode 2008MNRAS.386..155S . doi : 10.1111/j.1365-2966.2008.13022.x .  
    See also Palmer, Jason (2008-02-22). "Hope dims that Earth will survive Sun's death" . NewScientist.com news Retrieved 2008-03-24 .  
  59. ^ Stern, David P. (2001-11-25). "Planetary Magnetism" . Retrieved 2007-04-01 .  
  60. ^ Tackley, Paul J. (2000-06-16). "Mantle Convection and Plate Tectonics: Toward an Integrated Physical and Chemical Theory". Science 288 (5473): 2002–2007. Bibcode 2000Sci...288.2002T . doi : 10.1126/science.288.5473.2002 . PMID 10856206 .  
  61. ^ Milbert, DG; Smith, DA "Converting GPS Height into NAVD88 Elevation with the GEOID96 Geoid Height Model" . National Geodetic Survey, NOAA . http://www.ngs.noaa.gov/PUBS_LIB/gislis96.html . Retrieved 2007-03-07 .  
  62. ^ a b Sandwell, DT; Smith, WHF (2006-07-07). "Exploring the Ocean Basins with Satellite Altimeter Data" . NOAA/NGDC . http://www.ngdc.noaa.gov/mgg/bathymetry/predicted/explore.HTML . Retrieved 2007-04-21 .  
  63. ^ Mohr, PJ; Taylor, BN (October 2000). "Unit of length (meter)" . NIST Reference on Constants, Units, and Uncertainty . NIST Physics Laboratory . http://physics.nist.gov/cuu/Units/meter.html . Retrieved 2007-04-23 .  
  64. ^ Staff (November 2001). "WPA Tournament Table & Equipment Specifications" . World Pool-Billiards Association . http://www.wpa-pool.com/index.asp?content=rules_spec . Retrieved 2007-03-10 .  
  65. ^ Senne, Joseph H. (2000). "Did Edmund Hillary Climb the Wrong Mountain". Professional Surveyor 20 (5): 16–21.  
  66. ^ Sharp, David (2005-03-05). "Chimborazo and the old kilogram". The Lancet 365 (9462): 831–832. doi : 10.1016/S0140-6736(05)71021-7 . PMID 15752514 .  
  67. ^ "Tall Tales about Highest Peaks" . Australian Broadcasting Corporation . http://www.abc.net.au/science/k2/moments/s1086384.htm . Retrieved 2008-12-29 .  
  68. ^ Brown, Geoff C.; Mussett, Alan E. (1981). The Inaccessible Earth (2nd ed.). Taylor & Francis. p. 166. ISBN 0-04-550028-2 .   Note: After Ronov and Yaroshevsky (1969).
  69. ^ Morgan, JW; Anders, E. (1980). "Chemical composition of Earth, Venus, and Mercury". Proceedings of the National Academy of Science 77 (12): 6973–6977. Bibcode 1980PNAS...77.6973M . doi : 10.1073/pnas.77.12.6973 . PMC 350422 . PMID 16592930 .  
  70. ^ This article incorporates text from a publication now in the public domain : Chisholm, Hugh, ed (1911). "Petrology". Encyclopædia Britannica (11th ed.). Cambridge University Press.  
  71. ^ Tanimoto, Toshiro (1995). Thomas J. Ahrens. ed (PDF). Crustal Structure of the Earth . Washington, DC: American Geophysical Union. ISBN 0-87590-851-9 . Archived from the original on Retrieved 2007-02-03 .  
  72. ^ Kerr, Richard A. (2005-09-26). "Earth's Inner Core Is Running a Tad Faster Than the Rest of the Planet". Science 309 (5739): 1313. doi : 10.1126/science.309.5739.1313a . PMID 16123276 .  
  73. ^ Jordan, TH (1979). "Structural Geology of the Earth's Interior". Proceedings National Academy of Science 76 (9): 4192–4200. Bibcode 1979PNAS...76.4192J . doi : 10.1073/pnas.76.9.4192 . PMC 411539 . PMID 16592703 .  
  74. ^ Robertson, Eugene C. (2001-07-26). "The Interior of the Earth" . USGS . http://pubs.usgs.gov/gip/interior/ . Retrieved 2007-03-24 .  
  75. ^ a b Turcotte, DL; Schubert, G. (2002). "4". Geodynamics (2 ed.). Cambridge, England, UK: Cambridge University Press. pp. 136–137. ISBN 978-0-521-66624-4 .  
  76. ^ Sanders, Robert (2003-12-10). "Radioactive potassium may be major heat source in Earth's core" . UC Berkeley News . http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml . Retrieved 2007-02-28 .  
  77. ^ Alfè, D.; Gillan, MJ; Vocadlo, L.; Brodholt, J.; Price, GD (2002). "The ab initio simulation of the Earth's core" (PDF). Philosophical Transaction of the Royal Society of London 360 (1795): 1227–1244 . http://chianti.geol.ucl.ac.uk/~dario/pubblicazioni/PTRSA2002.pdf . Retrieved 2007-02-28 .  
  78. ^ Vlaar, N; Vankeken, P.; Vandenberg, A. (1994). "Cooling of the Earth in the Archaean: Consequences of pressure-release melting in a hotter mantle" (PDF). Earth and Planetary Science Letters 121 (1-2):  
  79. ^ Turcotte, DL; Schubert, G. (2002). "4". Geodynamics (2 ed.). Cambridge, England, UK: Cambridge University Press. p. 137. ISBN 978-0-521-66624-4 .  
  80. ^ Pollack, Henry N.; Hurter, Suzanne J.; Johnson, Jeffrey R. (August 1993). "Heat flow from the Earth's interior: Analysis of the global data set" . Reviews of Geophysics 31 (3):  
  81. ^ Richards, MA; Duncan, RA; Courtillot, VE (1989). "Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails". Science 246 (4926): 103–107. Bibcode 1989Sci...246..103R . doi : 10.1126/science.246.4926.103 . PMID 17837768 .  
  82. ^ Sclater, John G; Parsons, Barry; Jaupart, Claude (1981). "Oceans and Continents: Similarities and Differences in the Mechanisms of Heat Loss". Journal of Geophysical Research 86 (B12): 11535. Bibcode 1981JGR....8611535S . doi : 10.1029/JB086iB12p11535 .  
  83. ^ Brown, KH; Wohletz (2005). "SFT and the Earth's Tectonic Plates" . Los Alamos National Laboratory . http://www.ees1.lanl.gov/Wohletz/SFT-Tectonics.htm . Retrieved 2007-03-02 .  
  84. ^ Kious, WJ; Tilling, RI (1999-05-05). "Understanding plate motions" . USGS . http://pubs.usgs.gov/gip/dynamic/understanding.html . Retrieved 2007-03-02 .  
  85. ^ Seligman, Courtney (2008). "The Structure of the Terrestrial Planets" . Online Astronomy eText Table of Contents . cseligman.com . http://cseligman.com/text/planets/innerstructure.htm . Retrieved 2008-02-28 .  
  86. ^ Duennebier, Fred (1999-08-12). "Pacific Plate Motion" . University of Hawaii . http://www.soest.hawaii.edu/GG/ASK/plate-tectonics2.html . Retrieved 2007-03-14 .  
  87. ^ Mueller, RD; Roest, WR; Royer, J.-Y.; Gahagan, LM; Sclater, JG (2007-03-07). "Age of the Ocean Floor Poster" . NOAA . http://www.ngdc.noaa.gov/mgg/fliers/96mgg04.html . Retrieved 2007-03-14 .  
  88. ^ "Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada". Contributions to Mineralogy and Petrology 134 (1): 3. 1999. Bibcode 1999CoMP..134....3B . doi : 10.1007/s004100050465 .  
  89. ^ Meschede, Martin; Barckhausen, Udo (2000-11-20). "Plate Tectonic Evolution of the Cocos-Nazca Spreading Center" . Proceedings of the Ocean Drilling Program . Texas A&M University . http://www-odp.tamu.edu/publications/170_SR/chap_07/chap_07.htm . Retrieved 2007-04-02 .  
  90. ^ Staff. "GPS Time Series" . NASA JPL . http://sideshow.jpl.nasa.gov/mbh/series.html . Retrieved 2007-04-02 .  
  91. ^ a b Pidwirny, Michael (2006). "Fundamentals of Physical Geography (2nd Edition)" . PhysicalGeography.net . http://www.physicalgeography.net/fundamentals/7h.html . Retrieved 2007-03-19 .  
  92. ^ Kring, David A. "Terrestrial Impact Cratering and Its Environmental Effects" . Lunar and Planetary Laboratory . http://www.lpi.usra.edu/science/kring/epo_web/impact_cratering/intro/ . Retrieved 2007-03-22 .  
  93. ^ Staff. "Layers of the Earth" . Volcano World . http://volcano.oregonstate.edu/vwdocs/vwlessons/plate_tectonics/part1.html . Retrieved 2007-03-11 .  
  94. ^ Jessey, David. "Weathering and Sedimentary Rocks" . Cal Poly Pomona . http://geology.csupomona.edu/drjessey/class/Gsc101/Weathering.html . Retrieved 2007-03-20 .  
  95. ^ de Pater, Imke; Lissauer, Jack J. (2010). Planetary Sciences (2nd ed.). Cambridge University Press. p. 154. ISBN 0-521-85371-0 .  
  96. ^ Wenk, Hans-Rudolf; Bulakh, Andre? Glebovich (2004). Minerals: their constitution and origin . Cambridge University Press. p. 359. ISBN 0-521-52958-1 .  
  97. ^ FAO Staff (1995). FAO Production Yearbook 1994 (Volume 48 ed.). Rome, Italy: Food and Agriculture Organization of the United Nations. ISBN 92-5-003844-5 .  
  98. ^ Sverdrup, HU; Fleming, Richard H. (1942-01-01). The oceans, their physics, chemistry, and general biology . Scripps Institution of Oceanography Archives. ISBN 0-13-630350-1 . http://repositories.cdlib.org/sio/arch/oceans/ . Retrieved 2008-06-13 .  
  99. ^ "7,000 m Class Remotely Operated Vehicle KAIKO 7000 " . Japan Agency for Marine-Earth Science and Technology (JAMSTEC) . http://www.jamstec.go.jp/e/about/equipment/ships/kaiko7000.html . Retrieved 2008-06-07 .  
  100. ^ Charette, Matthew A.; Smith, Walter HF (June 2010). "The Volume of Earth's Ocean" . Oceanography 23 (2): 112–114 . http://www.tos.org/oceanography/issues/issue_archive/issue_pdfs/23_2/23-2_charette.pdf . Retrieved 2010-06-04 .  
  101. ^ Shiklomanov, Igor A. (1999). "World Water Resources and their use Beginning of the 21st century Prepared in the Framework of IHP UNESCO" . State Hydrological Institute, St. Petersburg . http://webworld.unesco.org/water/ihp/db/shiklomanov/ . Retrieved 2006-08-10 .  
  102. ^ Kennish, Michael J. (2001). Practical handbook of marine science . Marine science series (3rd ed.). CRC Press. p. 35. ISBN 0-8493-2391-6 .  
  103. ^ Mullen, Leslie (2002-06-11). "Salt of the Early Earth" . NASA Astrobiology Magazine . http://www.astrobio.net/news/article223.html . Retrieved 2007-03-14 .  
  104. ^ "Oceanic Processes" . NASA Astrobiology Retrieved 2007-03-14 .  
  105. ^ Scott, Michon (2006-04-24). "Earth's Big heat Bucket" . NASA Earth Observatory . http://earthobservatory.nasa.gov/Study/HeatBucket/ . Retrieved 2007-03-14 .  
  106. ^ Sample, Sharron (2005-06-21). "Sea Surface Temperature" . NASA . http://science.hq.nasa.gov/oceans/physical/SST.html . Retrieved 2007-04-21 .  
  107. ^ Geerts, B.; Linacre, E. (November 1997). "The height of the tropopause" . Resources in Atmospheric Sciences . University of Wyoming . http://www-das.uwyo.edu/~geerts/cwx/notes/chap01/tropo.html . Retrieved 2006-08-10 .  
  108. ^ a b Staff (2003-10-08). "Earth's Atmosphere" . NASA . http://www.nasa.gov/audience/forstudents/9-12/features/912_liftoff_atm.html . Retrieved 2007-03-21 .  
  109. ^ a b Moran, Joseph M. (2005). "Weather" . World Book Online Reference Center . NASA/World Book, Inc . http://www.nasa.gov/worldbook/weather_worldbook.html . Retrieved 2007-03-17 .  
  110. ^ a b Berger, Wolfgang H. (2002). "The Earth's Climate System" . University of California, San Diego . http://earthguide.ucsd.edu/virtualmuseum/climatechange1/cc1syllabus.shtml . Retrieved 2007-03-24 .  
  111. ^ Rahmstorf, Stefan (2003). "The Thermohaline Ocean Circulation" . Potsdam Institute for Climate Impact Research . http://www.pik-potsdam.de/~stefan/thc_fact_sheet.html . Retrieved 2007-04-21 .  
  112. ^ Various (1997-07-21). "The Hydrologic Cycle" . University of Illinois . http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/hyd/home.rxml . Retrieved 2007-03-24 .  
  113. ^ Sadava, David E.; Heller, H. Craig; Orians, Gordon H. (2006). Life, the Science of Biology (8th ed.). MacMillan. p. 1114. ISBN 0-7167-7671-5 .  
  114. ^ Staff. "Climate Zones" . UK Department for Environment, Food and Rural Affairs . http://www.ace.mmu.ac.uk/eae/Climate/Older/Climate_Zones.html . Retrieved 2007-03-24 .  
  115. ^ Staff (2004). "Stratosphere and Weather; Discovery of the Stratosphere" . Science Week . http://scienceweek.com/2004/rmps-23.htm . Retrieved 2007-03-14 .  
  116. ^ de Córdoba, S. Sanz Fernández (2004-06-21). "Presentation of the Karman separation line, used as the boundary separating Aeronautics and Astronautics" . Fédération Aéronautique Internationale . http://www.fai.org/astronautics/100km.asp . Retrieved 2007-04-21 .  
  117. ^ Liu, SC; Donahue, TM (1974). "The Aeronomy of Hydrogen in the Atmosphere of the Earth". Journal of Atmospheric Sciences 31 (4): 1118–1136. Bibcode 1974JAtS...31.1118L . doi : 10.1175/1520-0469(1974)031<1118:TAOHIT>2.0.CO;2 .  
  118. ^ Catling, David C.; Zahnle, Kevin J.; McKay, Christopher P. (2001). "Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth" . Science 293 (5531):  
  119. ^ Abedon, Stephen T. (1997-03-31). "History of Earth" . Ohio State University . http://www.mansfield.ohio-state.edu/~sabedon/biol1010.htm . Retrieved 2007-03-19 .  
  120. ^ Hunten, DM; Donahue, T. M (1976). "Hydrogen loss from the terrestrial planets". Annual review of earth and planetary sciences 4 (1): 265–292. Bibcode 1976AREPS...4..265H . doi : 10.1146/annurev.ea.04.050176.001405 .  
  121. ^ Lang, Kenneth R. (2003). The Cambridge guide to the solar system . Cambridge University Press. p. 92. ISBN 0-521-81306-9 .  
  122. ^ Fitzpatrick, Richard (2006-02-16). "MHD dynamo theory" . NASA WMAP . http://farside.ph.utexas.edu/teaching/plasma/lectures/node69.html . Retrieved 2007-02-27 .  
  123. ^ Campbell, Wallace Hall (2003). Introduction to Geomagnetic Fields . New York: Cambridge University Press. p. 57. ISBN 0-521-82206-8 .  
  124. ^ Stern, David P. (2005-07-08). "Exploration of the Earth's Magnetosphere" . NASA . http://www-spof.gsfc.nasa.gov/Education/wmap.html . Retrieved 2007-03-21 .  
  125. ^ McCarthy, Dennis D.; Hackman, Christine; Nelson, Robert A. (November 2008). "The Physical Basis of the Leap Second". The Astronomical Journal 136 (5): 1906–1908. Bibcode 2008AJ....136.1906M . doi : 10.1088/0004-6256/136/5/1906 .  
  126. ^ "Leap seconds" . Time Service Department, USNO . http://tycho.usno.navy.mil/leapsec.html . Retrieved 2008-09-23 .  
  127. ^ http://maia.usno.navy.mil/ser7/ser7.dat
  128. ^ Seidelmann, P. Kenneth (1992). Explanatory Supplement to the Astronomical Almanac . Mill Valley, CA: University Science Books. p. 48. ISBN 0-935702-68-7 .  
  129. ^ Staff. "IERS Excess of the duration of the day to 86400s ... since 1623" . International Earth Rotation and Reference Systems Service (IERS) . http://hpiers.obspm.fr/eop-pc/earthor/ut1lod/lod-1623.html . Retrieved 2008-09-23 .   —Graph at end.
  130. ^ Staff. "IERS Variations in the duration of the day 1962–2005" . International Earth Rotation and Reference Systems Service (IERS). Archived from the original on Retrieved 2008-09-23 .  
  131. ^ Zeilik, M.; Gregory, SA (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. p. 56. ISBN 0-03-006228-4 .  
  132. ^ a b Williams, David R. (2006-02-10). "Planetary Fact Sheets" . NASA . http://nssdc.gsfc.nasa.gov/planetary/planetfact.html . Retrieved 2008-09-28 .   —See the apparent diameters on the Sun and Moon pages.
  133. ^ Williams, David R. (2004-09-01). "Moon Fact Sheet" . NASA . http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html . Retrieved 2007-03-21 .  
  134. ^ Vázquez, M.; Rodríguez, P. Montañés; Palle, E. (2006). "The Earth as an Object of Astrophysical Interest in the Search for Extrasolar Planets" (PDF). Instituto de Astrofísica de Canarias . http://www.iac.es/folleto/research/preprints/files/PP06024.pdf . Retrieved 2007-03-21 .  
  135. ^ Astrophysicist team (2005-12-01). "Earth's location in the Milky Way" . NASA . http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/030827a.html . Retrieved 2008-06-11 .  
  136. ^ Bromberg, Irv (2008-05-01). "The Lengths of the Seasons (on Earth)" . University of Toronto . http://www.sym454.org/seasons/ . Retrieved 2008-11-08 .  
  137. ^ Lin, Haosheng (2006). "Animation of precession of moon orbit" . Survey of Astronomy AST110-6 . University of Hawaii at Manoa . http://www.ifa.hawaii.edu/users/lin/ast110-6/applets/precession_of_moon_orbit.htm . Retrieved 2010-09-10 .  
  138. ^ Fisher, Rick (1996-02-05). "Earth Rotation and Equatorial Coordinates" . National Radio Astronomy Observatory . http://www.cv.nrao.edu/~rfisher/Ephemerides/earth_rot.html . Retrieved 2007-03-21 .  
  139. ^ Williams, Jack (2005-12-20). "Earth's tilt creates seasons" . USAToday . http://www.usatoday.com/weather/tg/wseason/wseason.htm . Retrieved 2007-03-17 .  
  140. ^ Espenak, F.; Meeus, J. (2007-02-07). "Secular acceleration of the Moon" . NASA . http://sunearth.gsfc.nasa.gov/eclipse/SEcat5/secular.html . Retrieved 2007-04-20 .  
  141. ^ Poropudas, Hannu KJ (1991-12-16). "Using Coral as a Clock" . Skeptic Tank . http://www.skepticfiles.org/origins/coralclo.htm . Retrieved 2007-04-20 .  
  142. ^ Laskar, J. et al. (2004). "A long-term numerical solution for the insolation quantities of the Earth". Astronomy and Astrophysics 428 (1): 261–285. Bibcode 2004A&A...428..261L . doi : 10.1051/0004-6361:20041335 .  
  143. ^ Murray, N.; Holman, M. (2001). "The role of chaotic resonances in the solar system". Nature 410 (6830): 773–779. arXiv : astro-ph/0111602 . doi : 10.1038/35071000 . PMID 11298438 .  
  144. ^ Canup, R.; Asphaug, E. (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature 412 (6848): 708–712. Bibcode 2001Natur.412..708C . doi : 10.1038/35089010 . PMID 11507633 .  
  145. ^ Whitehouse, David (2002-10-21). "Earth's little brother found" . BBC News . http://news.bbc.co.uk/1/hi/sci/tech/2347663.stm . Retrieved 2007-03-31 .  
  146. ^ Christou, Apostolos A.; Asher, David J. (March 31, 2011). "A long-lived horseshoe companion to the Earth". arXiv : 1104.0036v1 .   See table 2, p. 5.
  147. ^ "UCS Satellite Database" . Nuclear Weapons & Global Security . Union of Concerned Scientists. January 31, Retrieved 2011-05-12 .  
  148. ^ Connors, Martin; Wieger, Paul; Veillet, Christian (July 27, 2011). "Earth's Trojan asteroid" . Nature 475 (7357): Retrieved 2011-07-27 .  
  149. ^ Choi, Charles Q. (July 27, 2011). "First Asteroid Companion of Earth Discovered at Last" . Space.com . http://www.space.com/12443-earth-asteroid-companion-discovered-2010-tk7.html . Retrieved 2011-07-27 .  
  150. ^ Staff (September 2003). "Astrobiology Roadmap" . NASA, Lockheed Martin . http://astrobiology.arc.nasa.gov/roadmap/g1.html . Retrieved 2007-03-10 .  
  151. ^ Dole, Stephen H. (1970). Habitable Planets for Man (2nd ed.). American Elsevier Publishing Co. ISBN 0-444-00092-5 . http://www.rand.org/pubs/reports/R414/ . Retrieved 2007-03-11 .  
  152. ^ Hillebrand, Helmut (2004). "On the Generality of the Latitudinal Gradient". American Naturalist 163 (2): 192–211. doi : 10.1086/381004 . PMID 14970922 .  
  153. ^ Staff (2006-11-24). "Mineral Genesis: How do minerals form?" . Non-vertebrate Paleontology Laboratory, Texas Memorial Museum . http://www.utexas.edu/tmm/npl/mineralogy/mineral_genesis/ . Retrieved 2007-04-01 .  
  154. ^ Rona, Peter A. (2003). "Resources of the Sea Floor" . Science 299 (5607): Retrieved 2007-02-04 .  
  155. ^ Walsh, Patrick J.. Sharon L. Smith, Lora E. Fleming. ed. Oceans and human health: risks and remedies from the seas . Academic Press, 2008. p. 212. ISBN 0123725844 . http://books.google.com/books?id=c6J5hlcjFaAC&pg=PA212 .  
  156. ^ Staff (2007-02-02). "Evidence is now 'unequivocal' that humans are causing global warming – UN report" . United Nations. Archived from the original on 21 December Retrieved 2007-03-07 .  
  157. ^ United States Census Bureau (2008-01-07). "World POP Clock Projection" . United States Census Bureau International Database . http://www.census.gov/ipc/www/popclockworld.html . Retrieved 2008-01-07 .  
  158. ^ Staff. "World Population Prospects: The 2006 Revision" . United Nations. Archived from the original on 5 September Retrieved 2007-03-07 .  
  159. ^ Staff (2007). "Human Population: Fundamentals of Growth: Growth" . Population Reference Retrieved 2007-03-31 .  
  160. ^ Peel, MC; Finlayson, BL; McMahon, TA (2007). "Updated world map of the Köppen-Geiger climate classification" . Hydrology and Earth System Sciences Discussions 4 (2): Retrieved 2007-03-31 .  
  161. ^ Staff. "Themes & Issues" . Secretariat of the Convention on Biological Diversity . http://www.biodiv.org/programmes/default.shtml . Retrieved 2007-03-29 .  
  162. ^ Staff (2006-08-15). "Canadian Forces Station (CFS) Alert" . Information Management Group . http://www.tscm.com/alert.html . Retrieved 2007-03-31 .  
  163. ^ Kennedy, Paul (1989). The Rise and Fall of the Great Powers (1st ed.). Vintage. ISBN 0-679-72019-7 .  
  164. ^ "UN Charter Index" . United Nations. Archived from the original on 20 February 2009 . http://replay.waybackmachine.org/20090220011242/http://www.un.org/aboutun/charter/ . Retrieved 2008-12-23 .  
  165. ^ Staff. "International Law" . United Nations. Archived from the original on 31 December 2009 . http://replay.waybackmachine.org/20081231055149/http://www.un.org/law/ . Retrieved 2007-03-27 .  
  166. ^ Kuhn, Betsy (2006). The race for space: the United States and the Soviet Union compete for the new frontier . Twenty-First Century Books. p. 34. ISBN 0-8225-5984-6 .  
  167. ^ Ellis, Lee (2004). Who's who of NASA Astronauts . Americana Group Publishing. ISBN 0-9667961-4-4 .  
  168. ^ Shayler, David; Vis, Bert (2005). Russia's Cosmonauts: Inside the Yuri Gagarin Training Center . Birkhäuser. ISBN 0-387-21894-7 .  
  169. ^ Wade, Mark (2008-06-30). "Astronaut Statistics" . Encyclopedia Astronautica . http://www.astronautix.com/articles/aststics.htm . Retrieved 2008-12-23 .  
  170. ^ "Reference Guide to the International Space Station" . NASA. 2007-01-16 . http://www.nasa.gov/mission_pages/station/news/ISS_Reference_Guide.html . Retrieved 2008-12-23 .  
  171. ^ Cramb, Auslan (2007-10-28). "Nasa's Discovery extends space station" . Retrieved 2009-03-23 .  
  172. ^ Random House Unabridged Dictionary . Random House. July 2005. ISBN 0-375-42599-3 .  
  173. ^ Liungman, Carl G. (2004). "Group 29: Multi-axes symmetric, both soft and straight-lined, closed signs with crossing lines". Symbols – Encyclopedia of Western Signs and Ideograms . New York: Ionfox AB. pp. 281–282. ISBN 91-972705-0-4 .  
  174. ^ "Earth" . The Nine Planets, A Multimedia Tour of the Solar System: one star, eight planets, and more . July 16, 2006 . http://nineplanets.org/earth.html . Retrieved 2010-03-09 .  
  175. ^ Dutch, SI (2002). "Religion as belief versus religion as fact" (PDF). Journal of Geoscience Education 50 (2): 137–144 . http://nagt.org/files/nagt/jge/abstracts/Dutch_v50n2p137.pdf . Retrieved 2008-04-28 .  
  176. ^ Edis, Taner (2003) (PDF). A World Designed by God: Science and Creationism in Contemporary Islam . Amherst: Prometheus. ISBN 1-59102-064-6 . http://www2.truman.edu/~edis/writings/articles/CFI-2001.pdf . Retrieved 2008-04-28 .  
  177. ^ Ross, MR (2005). "Who Believes What? Clearing up Confusion over Intelligent Design and Young-Earth Creationism" (PDF). Journal of Geoscience Education 53 (3): 319 . http://www.nagt.org/files/nagt/jge/abstracts/Ross_v53n3p319.pdf . Retrieved 2008-04-28 .  
  178. ^ Pennock, RT (2003). "Creationism and intelligent design". Annual Review of Genomics Human Genetics 4 (1): 143–63. doi : 10.1146/annurev.genom.4.070802.110400 . PMID 14527300 .  
  179. ^ Science, Evolution, and Creationism . Washington, DC: National Academies Press. 2008. ISBN 0-309-10586-2 . http://books.nap.edu/openbook.php?record_id=11876&page=R1 . Retrieved 2011-03-13 .  
  180. ^ Colburn,, A.; Henriques, Laura (2006). "Clergy views on evolution, creationism, science, and religion". Journal of Research in Science Teaching 43 (4): 419–442. Bibcode 2006JRScT..43..419C . doi : 10.1002/tea.20109 .  
  181. ^ Frye, Roland Mushat (1983). Is God a Creationist? The Religious Case Against Creation-Science . Scribner's. ISBN 0-684-17993-8 .  
  182. ^ Gould, SJ (1997). "Nonoverlapping magisteria" (PDF). Natural History 106 (2): 16–22 . http://www.jbburnett.com/resources/gould_nonoverlapping.pdf . Retrieved 2008-04-28 .  
  183. ^ Russell, Jeffrey B. "The Myth of the Flat Earth" . American Scientific Affiliation . http://www.asa3.org/ASA/topics/history/1997Russell.html . Retrieved 2007-03-14 .   ; but see also Cosmas Indicopleustes .
  184. ^ Jacobs, James Q. (1998-02-01). "Archaeogeodesy, a Key to Prehistory" . http://www.jqjacobs.net/astro/aegeo.html . Retrieved 2007-04-21 .  
  185. ^ Fuller, R. Buckminster (1963). Operating Manual for Spaceship Earth (First ed.). New York: EP Dutton & Co. ISBN 0-525-47433-1 . http://www.futurehi.net/docs/OperatingManual.html . Retrieved 2007-04-21 .  
  186. ^ Lovelock, James E. (1979). Gaia: A New Look at Life on Earth (First ed.). Oxford: Oxford University Press. ISBN 0-19-286030-5 .  
  187. ^ For example: McMichael, Anthony J. (1993). Planetary Overload: Global Environmental Change and the Health of the Human Species . Cambridge University Press. ISBN 0-521-45759-9 .  

Further reading

Eksterne skakels

Persoonlike gereedskap
Namespace
Variante
Aksies
Navigation
Interaksie
Toolbox
Print / uitvoer
Tale

mk.gd - Translate any webpage in real-time - This webpage has been translated in order to make it available in another language, view original page

View this page in: Afrikaans, Albanian, Arabic, Belarusian, Bulgarian, Catalan, Chinese (Simp), Chinese (Trad), Croatian, Czech, Danish, Dutch, English, Estonian, Filipino, Finnish, French, Galician, German, Greek, Hebrew, Hindi, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Korean, Latvian, Lithuanian, Macedonian, Malay, Maltese, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Spanish, Swahili, Swedish, Thai, Turkish, Ukrainian, Vietnamese, Welsh, Yiddish

Content and any subsequent copyright is upheld by the third-party - contact@mk.gd